Unlocking the Friedel-Crafts arylation of primary aliphatic alcohols and epoxides driven by hexafluoroisopropanol

نویسندگان

چکیده

•Access to a wide range of linear alcohols and arylated alkanes•Compatible with aliphatic electronically deactivated epoxides•No pre-activation required for primary alcohols•Hexafluoroisopropanol is key the reactivity Substitution reactions are common way couple two molecular fragments at sp3-hybridized carbon atom. The one or both coupling partners typically required, which adds additional chemical steps generates waste each stage. Efforts develop catalytic substitution arenes that bypass pre-activation, starting from feedstocks, such as epoxides, have been limited specific structural subclasses. We report discovery conditions direct numerous classes epoxides were not previously accessible, allowing one-step access branched complex products. Furthermore, since products epoxide alcohols, this enables bis-substitution different in pot. Alcohols arguably ideal electrophiles Friedel-Crafts alkylation, they widely available, require no produce stoichiometric beyond water. However, neither nor most terminal compatible existing intermolecular methodologies, sequential consequently remain underexplored. Here, we these limitations easily overcome using Brønsted acid catalysis hexafluoroisopropanol (HFIP) solvent. Electron-poor aromatic undergo stereospecific arylation give an alcohol which, depending on reaction conditions, can partake second nucleophilic arene Phenyl ethanols react through phenonium intermediate, whereas simple participate rare SN2 process, delivering exclusively. This work provides alternative metal-catalyzed cross-couplings accessing important scaffolds, widening applications reaction. Epoxides represent building blocks synthetic chemistry,1Weissermel K. Arpe H.-J. Industrial Organic Chemistry.Fourth Edition. Wiley-VCH Verlag GmbH, 2008Google Scholar former especially serving gateway densely functionalized molecules medicinal chemistry, crop science, material science.2Yudin A.K. Aziridines Synthesis. 2006Google In principle, would form C–C bonds between alcohols,3Rueping M. Nachtsheim B.J. A review new developments alkylation - green chemistry asymmetric catalysis.Beilstein J. Org. Chem. 2010; 6: 6https://doi.org/10.3762/bjoc.6.6Google Scholar, 4Kumar R. Van der Eycken E.V. Recent approaches C?C bond formation via dehydrative strategies.Chem. Soc. Rev. 2013; 42: 1121-1146https://doi.org/10.1039/C2CS35397KGoogle 5Dryzhakov Richmond E. Moran advances alcohols.Synthesis. 2016; 48: 935-959https://doi.org/10.1055/s-0035-1560396Google 6Estopiña-Durán S. Taylor J.E. acid-catalysed alcohols.Chemistry. 2021; 27: 106-120https://doi.org/10.1002/chem.202002106Google it prevent substrates water, but type remains challenging cases:(1)Ring-opening products, mainly electron-rich styrene oxides when Lewis promoters employed (Scheme 1).7Li G.-X. Qu promoted by fluorinated water.Chem. Commun. (Camb). 46: 2653-2655https://doi.org/10.1039/B926684DGoogle 8Talukdar Synthetically ring opening alkoxybenzenes alkoxynaphthalenes.RSC Adv. 2020; 10: 31363-31376https://doi.org/10.1039/D0RA05111JGoogle 9Dover T.L. McDonald F.E. Fluorinated alcohols: powerful ring-opening nucleophiles.Arkivoc iii. : 85-114https://doi.org/10.24820/ark.5550190.p011.449Google Consequently, strategies based transition metal photocatalysis developed suffer poor products,10Nielsen D.K. Doyle A.G. Nickel-catalyzed cross-coupling styrenyl boronic acids.Angew. Int. Ed. Engl. 2011; 50: 6056-6059https://doi.org/10.1002/anie.201101191Google 11Zhao Y. Weix D.J. regiodivergent aryl halides: co-catalysis controls regioselectivity.J. Am. 2014; 136: 48-51https://doi.org/10.1021/ja410704dGoogle 12Wang Z. Kuninobu Kanai Palladium-catalyzed oxirane-opening C?H activation.J. 2015; 137: 6140-6143https://doi.org/10.1021/jacs.5b02435Google 13Lu X.-Y. Yang C.-T. Liu J.-H. Zhang Z.-Q. Lu X. Lou Xiao B. Fu Cu-catalyzed organoboron compounds.Chem. 51: 2388-2391https://doi.org/10.1039/C4CC09321FGoogle 14Lu Yan L.-Y. Li J.-S. J.-M. Zhou H.-p. Jiang R.-C. C.-C. Hu Base-free Ni-catalyzed Suzuki-type acids.Chem. 56: 109-112https://doi.org/10.1039/C9CC08079AGoogle 15Parasram Shields Ahmad O. Knauber T. Regioselective cross-electrophile (hetero)aryl iodides Ni/Ti/photoredox catalysis.ACS Catal. 5821-5827https://doi.org/10.1021/acscatal.0c01199Google 16Potrz?saj A. Musiejuk Cha?adaj W. Giedyk Gryko D. Cobalt catalyst determines regioselectivity halides.J. 143: 9368-9376https://doi.org/10.1021/jacs.1c00659Google notably alkyl epoxides.11Zhao For oxides, more branch-selective examples known,14Lu Scholar,15Parasram those bearing strong electron-withdrawing groups inaccessible.(2)Dehydrative also undeveloped. Owing their stability, only low-yielding (<10%) longer than carbons known, mixtures due rearrangements.17Sieskind Albrecht P. Synthesis alkylbenzenes catalysed K10-montmorillonite.Tetrahedron Lett. 1993; 34: 1197-1200https://doi.org/10.1016/S0040-4039(00)77527-7Google Scholar,18Deshmukh A.R.A.S. Gumaste V.K. Bhawal B.M. Alkylation benzene long chain (C8-C18) over zeolite-Y.Catal. 2000; 64: 247-250https://doi.org/10.1023/A:1019055507996Google few transition-metal-catalyzed methods described, use phenol derivatives partners.19Lee D.-H. Kwon K.-H. Yi C.S. Dehydrative C-H alkenylation phenols expedient synthesis substituted benzofurans.J. 2012; 134: 7325-7328https://doi.org/10.1021/ja302710vGoogle 20Frost J.R. Cheong C.B. Donohoe T.J. Iridium-catalyzed C4-alkylation 2,6-Di-tert-butylphenol hydrogen-borrowing catalysis.Synthesis. 49: 910-916https://doi.org/10.1055/s-0035-1561439Google 21Yu C.-J. Zeng H. Dearomatization-rearomatization strategy ortho-selective alcohols.Angew. 60: 4043-4048https://doi.org/10.1002/anie.202010845Google general, assemble several cross-coupling,22Martin Fürstner Cross-coupling halides Grignard reagents catalyzed low-valent iron complex.Angew. 2004; 43: 3955-3957https://doi.org/10.1002/anie.200460504Google 23Nakamura Matsuo Ito Nakamura Iron-catalyzed secondary reagents.J. 126: 3686-3687https://doi.org/10.1021/ja049744tGoogle 24Hatakeyama Fujiwara Y.-i. Okada Itoh Hashimoto Kawamura Ogata Takaya Kumada-Tamao-Corriu iron-bisphosphine complex.Chem. 40: 1030-1032https://doi.org/10.1246/cl.2011.1030Google 25Yang Y.-C. L. Copper-catalyzed compounds pseudohalides.Angew. 3904-3907https://doi.org/10.1002/anie.201008007Google 26Yang Tajuddin Wu Liang Czyzewska Steel P.G. Marder T.B. Alkylboronic esters copper-catalyzed borylation 528-532https://doi.org/10.1002/anie.201106299Google 27Liu Xu Cui reductive nonactivated tosylates mesylates bromides.Chemistry. 20: 15334-15338https://doi.org/10.1002/chem.201405223Google 28Kim Goldfogel M.J. Gilbert M.M. chlorides chlorides.J. 142: 9902-9907https://doi.org/10.1021/jacs.0c02673Google 29Charboneau Barth E.L. Hazari N. Uehling M.R. Zultanski S.L. applicable dual system enabled mechanistic studies.ACS 12642-12656https://doi.org/10.1021/acscatal.0c03237Google 30Li Sun Wang C. Electrochemically enabled, nickel-catalyzed dehydroxylative 3536-3543https://doi.org/10.1021/jacs.0c13093Google 31Dong MacMillan D.W.C. Metallaphotoredox-enabled deoxygenative alcohols.Nature. 598: 451-456https://doi.org/10.1038/s41586-021-03920-6Google hydrodefluorination32Zhu Pérez Caputo Stephan D.W. Use trifluoromethyl benzylation subsequent hydrodefluorination.Angew. 55: 1417-1421https://doi.org/10.1002/anie.201510494Google C–H functionalization33Shi He Direct functionalization sulfonate gold(III).J. 13596-13597https://doi.org/10.1021/ja046890qGoogle Scholar,34Wilson A.S.S. Hill M.S. Mahon M.F. Dinoi Maron Organocalcium-mediated benzene.Science. 2017; 358: 1168-1171https://doi.org/10.1126/science.aao5923Google devised, all pre-activate and, cases, partner well. development broadly benefit: themselves could then be envisaged where distinct installed pot provide straightforward 1,1,2-triarylethane frameworks, ranging life sciences feedstock precursors. Existing largely start alkenes precursors ensure positional control forming either multi-step preparation substrates, directing groups, under inert atmosphere.35Tolstoy Engman Paptchikhine Bergquist Church Leung A.W.-M. Andersson hydrogenation yielding chiral diarylmethines weakly coordinating noncoordinating substituents.J. 2009; 131: 8855-8860https://doi.org/10.1021/ja9013375Google 36Crudden C.M. Ziebenhaus Rygus J.P.G. Ghozati Unsworth P.J. Nambo Voth Hutchinson Laberge V.S. Maekawa Imao Iterative protecting group-free leading multiply structures.Nat. 7: 11065https://doi.org/10.1038/ncomms11065Google 37Guo Huang G.-B. Q.-L. Xie Weng G. An efficient approach 1,1,2-triarylethanes organo-photoredox-catalyzed decarboxylative addition reaction.Org. Front. 2019; 1955-1960https://doi.org/10.1039/C9QO00380KGoogle 38Urkalan K.B. Sigman oxidative difunctionalization organostannanes oxygen.Angew. 3146-3149https://doi.org/10.1002/anie.200900218Google 39Kuang Song Q. Pd-catalyzed 1,2-diarylation vinylarenes ambient temperature.Org. 4: 1224-1228https://doi.org/10.1039/C7QO00097AGoogle 40Shrestha Basnet Dhungana R.K. Kc Thapa Sears J.M. Giri regioselective 1,2-dicarbofunctionalization olefins intercepting Heck intermediates imine-stabilized transient metallacycles.J. 139: 10653-10656https://doi.org/10.1021/jacs.7b06340Google 41Chen Cao Yin Liao Ye Modular enantioenriched enantioselective arylboration sequence.ACS 2425-2429https://doi.org/10.1021/acscatal.7b00300Google 42Gao Chen L.-A. Brown M.K. stereoselective diarylation alkenylarenes.J. 2018; 140: 10653-10657https://doi.org/10.1021/jacs.8b05680Google 43Basnet Shrestha Boyle Synergistic bimetallic Ni/Ag Ni/Cu ?,?-diarylation alkenyl ketimines: addressing ?-H Elimination situ Generation Cationic Ni(II) Catalysts.J. 15586-15590https://doi.org/10.1021/jacs.8b09401Google 44Ouyang X.-H. Cheng 1,2-Diarylation aryldiazonium salts visible light photoredox catalysis.Chem. 54: 8745-8748https://doi.org/10.1039/C8CC04526GGoogle 45Derosa Kleinmans Tran V.T. Karunananda Wisniewski S.R. Eastgate M.D. Engle K.M. amides.J. 17878-17883https://doi.org/10.1021/jacs.8b11942Google 46Anthony Lin Baudet Diao vinylarenes.Angew. 58: 3198-3202https://doi.org/10.1002/anie.201900228Google 47Derosa Kang Jankins T.C. K.L. carboxylates: 1,2,3-trifunctionalized blocks.Angew. 59: 1201-1205https://doi.org/10.1002/anie.201913062Google 48Apolinar Kim Schmidt M.A. Derosa Sulfonamide directivity diverse amines.ACS 14234-14239https://doi.org/10.1021/acscatal.0c03857Google 49Qin Luo M.-J. D.-L. Electrochemical functionalizations hydrocarbons.Angew. 1861-1868https://doi.org/10.1002/anie.202011657Google Therefore, presented here offers complementary current methods. Herein, describe expansion include (ring-opening arylation), (dehydroarylation), dehydrodiarylation process stemming combination. solvent (HFIP)50Colomer I. Chamberlain A.E.R. Haughey M.B. Hexafluoroisopropanol highly versatile solvent.Nat. 1: 0088https://doi.org/10.1038/s41570-017-0088Google 51Sinha S.K. Bhattacharya Maiti Role activation.React. Eng. 244-253https://doi.org/10.1039/C8RE00225HGoogle 52Yu Sanjosé-Orduna Patureau F.W. Pérez-Temprano M.H. Emerging unconventional organic solvents related reactions.Chem. 1643-1652https://doi.org/10.1039/C8CS00883CGoogle 53Pozhydaiev V. Power Gandon Lebœuf Exploiting acid-catalyzed (Camb.). 11548-11564https://doi.org/10.1039/D0CC05194BGoogle 54Bhattacharya Ghosh Hexafluoroisopropanol: magical activation.Chem. Sci. 12: 3857-3870https://doi.org/10.1039/D0SC06937JGoogle triflic (TfOH) catalyst. Indeed, association catalysts HFIP known trigger transformations rather unreactive alkenes, cyclopropanes reactive hydrogen-bond networks.55Vukovi? V.D. Wolf Catalytic benzylic 3085-3089https://doi.org/10.1002/anie.201612573Google 56Qi Hasenmaile F. Calcium(II)-catalyzed intra- hydroamidation unactivated hexafluoroisopropanol.ACS 8: 1734-1739https://doi.org/10.1021/acscatal.7b04271Google 57Richmond Vukovi? Sajadi Rowley C.N. Ring-opening hydroarylation monosubstituted hexafluoroisopropanol.Chem. 9: 6411-6416https://doi.org/10.1039/C8SC02126KGoogle 58Qi styrenes hexafluoroisopropanol.Angew. 57: 14245-14249https://doi.org/10.1002/anie.201809470Google 59Wang Force Guillot Carpentier J.-F. Sarazin Bour acid/hexafluoroisopropanol: promoter selective Ortho-C-alkylation anilines alkenes.ACS 10794-10802https://doi.org/10.1021/acscatal.0c02959Google 60Qi Hexafluoroisopropanol-promoted haloamidation halolactonization alkenes.Angew. 946-953https://doi.org/10.1002/anie.202010846Google Under found stereospecific, resulting intermediacy well-established61Cram Studies stereochemistry. Stereospecific Wagner--Meerwein rearrangement isomers 3-phenyl-2-butanol.J. 1949; 71: 3863-3870https://doi.org/10.1021/ja01180a001Google 62Cram Davis II. complete resolution 3-phenyl-2-pentanol 2-phenyl-3-pentanol.J. 3871-3875https://doi.org/10.1021/ja01180a002Google 63Cram III. 2-phenyl-3-pentanol systems.J. 3875-3883https://doi.org/10.1021/ja01180a003Google 64Cram Phenonium ion-pairs intramolecular rearrangements solvolysis occur 3-phenyl-2-butanol system.J. 1952; 74: 2129-2137https://doi.org/10.1021/ja01129a001Google 65Olah G.A. Porter R.D. Stable carbocations. CXXI. Carbon-13 magnetic resonance spectroscopy study ethylenarenium ions (spiro[2.5]octadienyl cations).J. 1971; 93: 6877-6887https://doi.org/10.1021/ja00754a031Google 66Olah Head N.J. Rasul Prakash G.K.S. Protonation benzocyclobutene superacid: Cram’s ion (spiro[5.2]octa-5,7-dien-4-yl cation) revisited.J. 1995; 117: 875-882https://doi.org/10.1021/ja00108a003Google 67del Río Menéndez M.I. López Sordo On structure ions: role back-bonding interaction carbocation chemistry.J. Phys. 104: 5568-5571https://doi.org/10.1021/jp994068gGoogle 68del Rearrangements involving ion: theoretical investigation.J. 2001; 123: 5064-5068https://doi.org/10.1021/ja0039132Google 69Tsuji Richard J.P. Formation mechanism ring-substituted aqueous solution.J. 29: 557-564https://doi.org/10.1002/poc.3510Google underexploited70Boye A.C. Meyer Ingison C.K. French A.N. Wirth Novel lactonization participation induced hypervalent iodine reagents.Org. 2003; 5: 2157-2159https://doi.org/10.1021/ol034616fGoogle 71Ho T.-L. Chein R.-J. Intervention Ritter reactions.J. 69: 591-592https://doi.org/10.1021/jo035561yGoogle 72Lebœuf Frontier A.J. Using Nazarov electrocyclization stage chemoselective [1,2]-migrations: cyclopentenones.Angew. 10981-10985https://doi.org/10.1002/anie.201104870Google 73Protti Dondi Mella Fagnoni Albini Looking paradigm ions.Eur. 2011: 3229-3237https://doi.org/10.1002/ejoc.201100305Google 74Lebœuf Ciesielski Experimental studies cyclization/Wagner-Meerwein sequence.J. 6296-6308https://doi.org/10.1021/ja211970pGoogle 75Banik S.M. Medley J.W. Jacobsen E.N. Catalytic, difluorination generate difluoromethylated stereocenters.Science. 353: 51-54https://doi.org/10.1126/science.aaf8078Google 76Scheidt Neufeld Schäfer Thiehoff Gilmour geminal construction fluorine-rich bioisosteres.Org. 8073-8076https://doi.org/10.1021/acs.orglett.8b03794Google 77Li Bauer Di Mauro Maulide ?-arylation carbonyl activation.Angew. 9816-9819https://doi.org/10.1002/anie.201904899Google 78Xu Holst H.M. McGuire S.B. Race Reagent unsymmetrical ions.J. 8090-8096https://doi.org/10.1021/jacs.0c02095Google without alcohol. Simple SN2-type mechanism, supported density functional theory (DFT) calculations. broad-reaching (>160 examples) reaction, thus, allows user re-evaluate toward applications. commenced our investigations studying monoarylation electron-deficient notoriously functionalize. Following large survey (see Table S1), observed (pentafluorophenyl)ethylene oxide m-xylene (5 equiv) provided target product 3 97% yield room temperature 6 h conducting (0.4 M) presence TfOH mol %) 2). similar was obtained Bi(OTf)3/nBu4NPF679Qin Yamagiwa Matsunaga Shibasaki Bismuth-catalyzed hydroamination 1,3-dienes carbamates, sulfonamides, carboxamides.J. 2006; 128: 1611-1614https://doi.org/10.1021/ja056112dGoogle instead otherwise identical (96% yield). performed higher concentration (1 M), albeit lower selectivity. More (dichloromethane, 1,2-dichloroethane, toluene, nitromethane) led significant decrease (<55%) because oligomerization substrate, highlighting critical transformation. Of note, reducing number equivalents caused become competitive side a[1a] = 0.2 bRegioisomers separated flash column chromatography. cBi(OTf)3/nBu4NPF6 dUsing (0.1 %). eDiarylated detected isolated (22% determined 1H NMR hexamethyldisiloxane external standard). fDiarylated 107 34% yield. gDiarylated 120 13% h[1x] M.iDiarylated 121 8% Mes 1,3,5-trimethylphenyl. TMP 1,3,5-trimethoxyphenyl. With optimized hand, first explored scope (pentafluorophenyl)ethanol 1a array heteroaryl nucleophiles. transformation mono- tetrasubstituted arenes, incorporating electron-donating substituents afford corresponding 3–29 42%–97% yields. steric hindrance exhibited various nucleophile did hamper reactivity, nearly quantitative yields achieved cases (up 96%). Although 1,3,5-triethylbenzene produced mixture diarylated 8 84 1:1.25 ratio, 0°C 96% same applied mesitylene (9, 95%). Moreover, extended less nucleophiles, (18), fluorobenzene (19), bromobenzene (20), providing 53%–84% other 1,4-difluorobenzene (21) sufficiently its reduced nucleophilicity. case, underwent HFIP. Lower concentrations (0.2 improved up 90% case adduct 18, agreement previous identified H-bonded clusters HFIP.53Pozhydaiev hexafluoroisopropa

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Friedel-Crafts alkylation of indoles with epoxides using PW12-APTES@SBA-15

H3PW12O40 (PW12) was immobilized over mesoporous alumina through the reaction of mesoporous alumina functionalized 3-aminopropyl triethoxy silane (3-APTES) and PW12. The surface properties of the functionalized nanocomposite was analyzed by a series of characterization techniques like elemental analysis, FTIR and XRD. XRD and adsorption–desorption analysis shows that the mesostructure of silica...

متن کامل

Room Temperature, Metal-Free Arylation of Aliphatic Alcohols

Diaryliodonium salts are demonstrated as efficient arylating agents of aliphatic alcohols under metal-free conditions. The reaction proceeds at room temperature within 90 min to give alkyl aryl ethers in good to excellent yields. Aryl groups with electron-withdrawing substituents are transferred most efficiently, and unsymmetric iodonium salts give chemoselective arylations. The methodology has...

متن کامل

Pi-activated alcohols: an emerging class of alkylating agents for catalytic Friedel-Crafts reactions.

The direct functionalization of aromatic compounds, via Friedel-Crafts alkylation reactions with alcohols, is one of the cornerstones in organic chemistry. The present emerging area deals with the recent advances in the use of pi-activated alcohols in the catalytic and stereoselective construction of benzylic stereocenters.

متن کامل

Biocatalytic Friedel–Crafts Acylation and Fries Reaction

The Friedel-Crafts acylation is commonly used for the synthesis of aryl ketones, and a biocatalytic version, which may benefit from the chemo- and regioselectivity of enzymes, has not yet been introduced. Described here is a bacterial acyltransferase which can catalyze Friedel-Crafts C-acylation of phenolic substrates in buffer without the need of CoA-activated reagents. Conversions reach up to...

متن کامل

Mutagenicity of aliphatic epoxides.

The mutagenicity of 17 aliphatic epoxides was determined using the specially constructed mutants of Salmonella typhimurium developed by Ames. The activity of these epoxides together with those reported in the literature as mutagens in strains TA100 and TA1535 depended on the degree of substitution around the oxirane ring. Monosubstituted oxiranes were the most potent mutagens in both strains. 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chem

سال: 2021

ISSN: ['2451-9308', '2451-9294']

DOI: https://doi.org/10.1016/j.chempr.2021.10.023